Material Detail

High-dimensional Statistics: Prediction, Association and Causal Inference

High-dimensional Statistics: Prediction, Association and Causal Inference

This video was recorded at 24th Annual Conference on Neural Information Processing Systems (NIPS), Vancouver 2010. This tutorial surveys methodology and theory for high-dimensional statistical inference when the number of variables or features greatly exceeds sample size. Particular emphasis will be placed on problems of model and feature selection. This includes variable selection in regression models or estimation of the edge set in graphical modeling. While the former is concerned with association, the latter can be used for causal analysis. In the high-dimensional setting, major challenges include designing computational algorithms that are feasible for large-scale problems, assigning statistical error rates (e.g., p-values), and developing theoretical insights about the limits of what... Show More
Rate

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.
hidden